Development of Measurement and Tracing of Vibration for the TPS Utility System Z. D. Tsaia,b, C. W. Hsua National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan, R.O.C. bE-Mail: ZDTsai@nsrrc.org.tw The civil construction and utility system of the 3-GeV Taiwan Photon Source (TPS) at NSRRC are expected to be ready for machine commission in 2013. Because various accelerator facilities are sensitive to vibration, its control and the design should be considered carefully. The specification provides the design necessary for the construction of architectural, mechanical, process, electrical and structural systems due to both the operation of machinery or equipment and the turbulence-inducing vibration in piping and ductwork. The utility system is a major and severe source of vibration, because the system has much rotating mechanical equipment and turbulent flow. The vibration induced at the tunnel sites is propagated through the main path of the piping, ductwork and ground or rigid contact with the building structure. For the purpose of tracing the source of vibrations and to prevent failure of the facility, a system to measure and to trace vibration has been developed, incorporating a programmable automation controller with a field-programmable gate array (FPGA) function to perform data acquisition with its algorithms. To prevent the transmission of vibration and noise to the building structure, the cross-talk effect of vibration should be clarified. We propose a new method that we combine with a time-frequency spectrogram and feature extraction algorithms to distinguish the cross-talk effect of vibration. It is helpful to specify the path of vibration propagation in the large and complicated accelerator system. propagation in the large and complicated accelerator system. ## DATA ACQUISITION AND RECORDING OF VIBRATION SIGNAL The PAC (National Instrument, NI) with real-time controllers and FPGA are adopted for all distributed data acquisition. We must first choose two positions of detection, one for the source of vibration such as the location of pumps or fans, and the other for the neighboring ground or remote ductwork with induced vibration. The proper accelerometers must be carefully selected for individual sensitivity. This FPGA function possesses an ability of rapid data acquisition to accept packets of data with a sampling rate 1 – 2 kHz, and then to use a direct memory access (DMA) and interrupt function to transfer data into the real-time controller without delay. The real-time controller transmits the native time waveform to Ethernet. The exchange server located on the same network can access these data via a NI published subscribe protocol (PSP) to conduct rapid data storage. A TDM streaming-data model defined by NI has been adopted. This TDM streaming is designed to write real-time data quickly and efficiently to a disk and also to have an auto-generated binary index file to provide consolidated information on all attributes in the bulk data file, which facilitates its search. All data for vibrational signals can be saved periodically. According to various requests of time and signal, these data can be accessed via the FTP protocol. It is helpful to trace fully the trend as historical information about the machine commission conditions, but historical information is chaotic, requiring human intervention to clarify according to individual experience. The best way is to model this experience mathematically, as shown in the following description ## TRACING ANALYSIS OF A VIBRATION SIGNAL An analysis algorithm that characterizes the main frequency is subsequently applied to the raw vibrational data. The processes include a band-pass filter, integration of a signal with a running RMS average, power spectrum with RMS average, time-frequency spectrogram, feature extraction, and correlation analysis as depicted in Figure 1. All processing is as follows. Because the mechanical vibration frequency appears almost in variably below 1 kHz and the general accelerometers have superior performance above 10 Hz, a Both worth band-pass filter has been implemented to remove the other spectrum unrelated to the mechanical The integration of Signal with Running RMS Average. The integration algorithm integrates the acceleration value from accelerometers into a velocity value. In general, the utility facility has a guideline using a value as definition, including the ASHRAE standard, ISO 2372 and Cordon presentation in 1991, which are readily comparable with these standards and the for arequency noise can be eliminated. The running RMS average is applicable alies in this step to decrease the signal fluctuation and to enhance the main waveform of the violational signal in the time domain. Power Spectrum with RMS Average. We use a FFT [4] to transform the signal in the document into the frequency spectrum to separate all frequencies, as shown in Figure 4 danger, window is applied to avoid a windowing effect. The noise signal in the frequency domain a also minimized with a RMS Power Spectrum with RMS Average average Time-Frequency Spectrogram When the power spectrum signal has been obtained and recorded, the inverter frequency of pumps or fans will be switched with time programmatically. When the frequency varies sequentially with time, all power spectra will be recorded with time to shape a time-frequency spectrogram as shown in Figure 3. The left time-frequency spectrogram shows a source of vibration from a fan of the AHU. The right time-frequency spectrogram shows vibration induced from the neighboring ground. Feature Extraction The time-frequency spectrogram is a 2D image with many maxima and slopes. The feature extraction has three steps of image processing [5], including ridge detection, binary thresholding and a size filter, to characterize the variation of the main frequency with time. The ridge detection removes the sidebands for every maximum. The binary thresholding converts a grey image into a binary image for the following processing as shown in Figure 4, and the size filter removes small particles, which is a kind of induced frequency without continuous variation with time as shown in Figure 5. The main maxima can thereby be clarified clearly. Correlation Analysis Once the main frequency becomes distinguished and preserved in the binary image, the correlation analysis is implemented easily. We select a portion of a time-frequency spectrogram with characteristic patterns as a match mask in the left image of Figure 5. The mask is applied into the right image of Figure 5 with image processing of pattern matching as shown in Figure 6. The figure shows that there are 3 similarity patterns between two detected positions of vibration. Therefore, the tracing analysis can be achieved. Figure 1: Flow chart to trace analysis of vibration Figure 2: Time waveform and the corresponding power Spectrum of the vibrational signal Figure 4: Binary images with processing of ridge detection and binary thresholding Figure 5: Binary images with processing of the size filter Figure 6: Correlation image with processing of pattern matching